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* Nuclear Thermal Rockets (NTR) are capable of producing high
specific impulse by employing heat produced by a nuclear fission
reactor to heat and therefore accelerate hydrogen through a rocket
nozzle providing thrust.
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é . Radiation

* Nuclear radiation ( Gamma rays and high energy Neutrons) is freely
sprayed in all directions.

« Astronauts are exposed to nuclear and cosmic radiation

« Some components in the spacecraft are sensitive to radiation
damage caused by radiation embrittlement, particularly electronic
control circuits.

« Some materials are subjected to a substantial thermal load as
radiation energy is converted to heat

Danger

Radiation risk




Radiation Shields and Shadow

» Shadow shields are used specifically to protect the crew and spacecraft
components from radiation emitted by the NTR. A safe design would be to encase
the NTR in a shield, but that would reduce the ships payload since radiation
shields weigh tons.

» Engineering challenge: protect crew and reduce mass
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!é‘ Staging Radiation Shields

« Staging radiation shields help reduce weight but they have to be strategically
placed

* Internal shields receive the majority of the high energy radiation but require active
cooling due to the thermal loads.

» External shields provide the “shadow shielding” effect and are designed to be a
thick solid mass. These shields take advantage of radiative cooling and loses heat
by thermal radiation.
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5 Radiation Shield
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)6‘ Design Constraints and Materials

« The internal shield is subjected to a substantial thermal load as radiation energy is
converted to heat.
» The active cooling system must be designed to absorb radiation and also reduce the
amount of radiation leakage through cooling paths.
« Two designs were looked at:
* Hex elements with helical flow path
* Pelletized bed with tortuous flow path

Material Selection

Lithium hydride (LiH)

* Pro- the most effective neutron absorber by per unite mass

« Con-poor thermal conductivity and narrow range of operating temperature. Material swells
at high temperatures.

Boron carbide (B4C)

» Pro-effective neutron absorber

« Con- heavier than LiH by 20% . Has the best thermal conductivity for this application.
Material is stable at high temperatures.
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! . Internal Radiation Shield Concepts
A\

Hex elements stacked

« Cooling using flow channels
through each hexagon element creating
a helicoidal flow

H2

Pelletized bed
« Randomly packed bed
e Tortuous flow distribution
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Symmetry Pelletized Bed
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!’ COMSOL Assumptions for Pelletized Bed
\Q—

Model Parameters

Mass flow=13.2 [kg/s]

Superficial Velocity= 5.4 [m/s]

Outlet Pressure= 3757 [kPa]

Inlet Temperature= 306.6 [K]

Shield Diameter=1 [m]

Shield Length = 0.5 [m]

Void Fraction=0.4

Mapped Heat Load

Allowable DeltaP= 1379[kPa]= 200 [psi]

Model Assumptions

Axisymmetric

Pellet Diameter= 2 [cm]

Density is based on ideal gas

Gas and pellet surface temperature
are the same
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Heat Loads are based on Boron Carbide
With a packing density of .6

Highest Heat loads are at
the bottom center core
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Note

Heat loads were derived out
of a Monte Carlo radiation
transport code from Los Alamos
National Laboratory (LANL)



Pellet Surface Temp Assuming:

*  Mass flow=13.2 [kg/s]

*  Superficial Velocity= 5.36 [m/s]
*  Pellet Diameter=2 [cm]

Time=50 s Surface: Temperature (degC)

Tgas = Tsurface

Tsurface
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,é Shield Temperature with Lower Mass flows

Point Graph: Temperature (degC)
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Note: These temperature profiles are only for Mass Flow was varied and temperatures
a pelletized bed Profiles were taken from this point.




The Ergun equation calculates the pressure drop

along the length of a pelletized bed given the fluid 400
superficial velocity, pellet size, void fraction, and fluid
viscosity and density.
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,é‘ Pelletized Bed Pressure Drop

Ergun vs Forchheimer Pressure Drop

Allowable AP = 1379[kPa]= 200 [psi]
Max AP= 375[kPa] = 54 [psi]
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